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Deformable Model of the Heart With Fiber Structure
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Abstract—A kinematic model of the heart with incompress-
ibility constraints was implemented. It accounts for the effects of
the heart fiber structure, which plays a major role in defining the
exact motion of the heart during the cardiac cycle. The volume
of the heart was divided into small hexahedral elements, and
in each element the fiber direction was specified. This allows
implementation of nearly any fiber structure and any geometry.
We performed preliminary tests on the model. The model was
deformed from its initial state to a final configuration. It was
assumed that the fibers shorten or elongate to some known
new value for each element. This, along with incompressibility
constraints, could simulate a beating heart if the elongations of
the fibers are known. The model was also deformed using imaging
data as a priori information. Simple geometries of the cylinder
and ellipsoid were investigated. The model can be used as a tool to
help in understanding the movement of the myocardium during
the heart cycle, and the impact of infarctions on that movement.

Index Terms—Deformable models, SPECT.

I. INTRODUCTION

K NOWLEDGE of the heart’s movement during the car-
diac cycle is an important indication of heart performance

and health. Imaging methods such as gated SPECT and PET,
or cine MRI, can be used to measure heart movement. These
methods, especially gated SPECT and PET, give limited results
due to poor resolution and noise. Useful diagnostic features of
this movement, such as twisting of the heart muscle or thick-
ening, are difficult or even sometimes impossible to measure
using SPECT or PET techniques. In this paper, we present a
deformable model that can be used to estimate heart move-
ment. Using this model, values of the left ventricle ejection frac-
tion (LVEF) and myocardial wall thickening can be estimated
more precisely than with direct estimation from gated nuclear
medicine studies.

In order to parameterize cardiac contractile motion seen in
images from gated studies, the images of different time gates
can be warped with elastic constraints to match each other [1].
However, these elastic constraints do not take into account fiber
structure of the heart muscle. Because of that, the motion field
found by this method may not be accurate.
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One approach to determining more accurate heart move-
ment would be to use finite-element methods [2]–[5]. In this
approach, the heart configuration during the heart cycle is
calculated using the balance of forces between the stresses
in the heart muscle and intraventricular pressure. Imaging
data can be used in this approach asa priori information [3].
The disadvantage of using finite-element methods is that the
material parameters must be known in order to determine
the balance of forces. It has been shown [6] that the material
parameters depend on the strain, state of activation, time after
activation, and location in the heart muscle. All of these factors
make the simulation of a beating heart with finite-element
methods extremely difficult.

In this paper, we describe a deformable parametric model
of the heart. In this model, we use the same meshes as used
in finite-element methods. The balance of forces, however, is
not calculated, so the specification of extremely complicated
material constraints is not necessary. The only regularization
constraint used during deformation of the model is incompress-
ibility. The deformation can be driven either by specification of
the fiber shortening/elongation for each element, or by imaging
information. We present results of computer simulations of the
model for some simple geometries of the cylinder and ellipsoid.

II. M ETHODS

The kinematics of the model will be presented in Section II-A.
In Section II-B, the implementation of imaging data as a driving
force of the deformation will be presented.

A. Deformable Model and Computer Implementation

The volume of the heart muscle is approximated by a set
of points, callednodes, located at specific places in the heart
muscle. These points are attached to the object and change po-
sition when the object is deforming. Nodes define hexahedral re-
gions (Fig. 1) which will be calledelements. The geometry over
each element are approximated using values for eight nodes,
which define any particular element. The geometry of each ele-
ment is interpolated from the nodes as follows:

(1)

where is the coordinate vector in the initial configuration,
is the trilinear approximation function, and is the

coordinate of a node in the initial configuration. and
are the coordinates of a point inside the element, which is

being approximated in the local coordinate system of an element
[see Fig. 1(a)]. Each element has its own independent local
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Fig. 1. Schematic representation of one element with black dots representing
the nodes. (a) Element (perfect cube) in local coordinate system. (b) Initial
configuration(XXX) of an element. (c) A deformed configuration of that element.
The deformation from (b) to (c) is described by the deformation gradientF̂̂F̂F .

coordinate system. For more information on the interpolation
functions please refer to [4]. The same interpolation is used
for the deformed configuration

(2)

Using elements in initial configurations [such as those pre-
sented in Fig. 1(b)] as building blocks, any geometry can be
constructed.

The deformation gradient , which describes the
deformation, can be derived using (1) and (2), and has the fol-
lowing form:

(3)

where is a symbol of a tensor product of two vectors. The
result of a tensor product of two vectors is a matrix (second-
order tensor). can be expressed in the variables of the
local coordinate system using the chain rule as follows:

(4)

where denotes transpose inverse. In order to make the cal-
culation more convenient, we evaluate the deformation gradient
only for eight points inside each element. These points are re-
ferred to asGauss pointssince the coordinates of these points
are determined the same way as positions of abscissas in the
Gaussian quadraturesmethod [7]. Because of that, the
is precalculated only for eight Gauss points inside the element
and stored. It follows that

for the given initial configuration is also precalculated and
stored for each element.

If the direction of the fibers in an initial configuration is
known and is represented by the unit vector, a new unit

vector of the fiber direction and the fiber extension ratio in
the deformed configuration are given by the following:

(5)

In the computer implementation, since the deformation gradient
is calculated only for Gauss points in each element, the direc-
tions of fibers, , only need to be known at these points.

To model the incompressibility during a deformation, the Ja-
cobian of the deformation gradient, is constrained to
a value of 1 for each of the Gauss points.

B. Deformation Driving Forces

In this study the model was deformed two ways. One defor-
mation was driven by minimizing an objective function based
on fiber shortening characteristics. The other deformation was
driven by minimizing a cost function based on image-driven
components. These two types of deformation are referred to as
fiber drivendeformation andimage drivendeformation, and the
cost functions are denoted as and , respectively.

The fiber driven objective function has the following form:

(6)

where are the positions of the nodes andis the
number of nodes in the model. The value of the fiber exten-
sion for each Gauss point in element for the current con-
figuration of nodes was given by .
The desired extension for elementwas given by . The term

ensured incompressibility where was the value
of the Jacobian for Gauss pointin element , and was a
penalty constant.

The image driven deformation was based on minimizing the
difference between two cardiac images. Taking two different
images of the heart at different time gates, one image becomes a
source , from which the deformation will begin and the other
image is a target . Because the images are voxel based, in order
to use our parametric model a transformation that will create the
mesh of the deformable model from the source image is needed.
In this paper we assume that an appropriate finite element mesh
has already been fitted to the image data. The creation of meshes
for each gate using gated SPECT data was investigated in [8].

In order to drive the model from the source configuration to
the target configuration each node has been assigned intensity

using the source image. As mentioned in the introduction,
since nodes are “attached” to the material, the intensity of the
nodes should remain the same during deformation. As a result,
the target configuration intensity of the nodes that correspond
to the target image should be the same as. Therefore, the
objective function is defined as follows:

(7)
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Fig. 2. Diagram representing directions in a heart model. The “cir” and “trans”
stand for circumferential and transmural directions. The transmural direction is
perpendicular to the surface, and the circumferential direction is parallel to the
surface and perpendicular to the long axis. The angle a is the angle between the
fiber direction “fiber” and the circumferential direction. Fiber direction is also
perpendicular to the transmural direction.

with being an average over the object defined as

(8)

The value of is mapped using tri-quadratic interpola-
tion. That is, the value of was a weighted average of 27
pixels surrounding the coordinate . The weights used were
appropriate to quadratic interpolation. Quadratic interpolation
was used to preserve the continuity of the derivative of.

In (7), there was an additional regularization term with a
penalty constant . It is assumed that there was little variability
in the extension ratios throughout the heart muscle. Without
this regularization, the fiber extension for some fibers would
have been much higher than for others. For real cardiac tissue
this is not the case since the activation of the heart muscle is
relatively uniform throughout the heart muscle volume.

Both objective functions and were minimized using the
standard conjugate gradient method [7]. Gradients were calcu-
lated numerically using double float precision.

III. RESULTS

We tested our model using a simple cylindrical geometry.
The cylinder was a good approximation of the equatorial region
of the heart [9]. The fiber orientation in the simulation of the
cylinder varied linearly from a 60 angle with circumferential
direction for the epicardial wall to 60for the endocardial wall.
The circumferential direction was in the plane perpendicular to
the surface of the object and was also perpendicular to the short
axis of the heart. All directions, and the fiber angle, are schemat-
ically shown in Fig. 2.

The radii of the cylinder were 1 and 2 cm and the cylinder
was 2 cm long [Fig. 3(a)]. The cylinder consisted of 480 nodes
and 320 elements. Using (6), the cylinder was contracted to a
configuration in which the fiber extension ratios were equal to

. The result is presented in Fig. 3(b).
Contraction of an abnormal heart was also simulated using

(6). For this simulation, one angular section was “dead” and the
assumed for that section equaled. Two neighboring sections

Fig. 3. Kinematic simulation of the cylinder. The left column is a
three-dimensional (3-D) view, and the right column is a view from the top. (a)
The first row is a cylinder in initial configuration. (b) The second row after a
contraction to� = 0:85. (c) The third row shows the contracted cylinder with
the dead sector located in the lower right part of the top view (at 5 o’clock).

were forced to contract to , and the rest of the model to
. The result of this simulation is presented in Fig. 3(c).

Computer generated analytic images with cylindrical sym-
metry presented in Fig. 4 were used as source and target im-
ages to drive the deformation. The intensity of the images had
a Gaussian profile through the heart wall. The width at half of
the maximum was 1 cm for the diastole image and 1.3 cm for
the systole image [Fig. 4(a) and (b)]. Uneven thickening was
simulated by setting the width at half maximum to 1.1 cm and
1.5 cm for the lower and upper parts of the heart, respectively
[Fig. 4(c)].

The deformable model of the cylinder described earlier was
deformed from a diastole to a systole configuration using (7).
Two simulations were performed in which the systole configu-
ration with even (Fig. 4(b)) and uneven (Fig. 4(c)) thickening
around the heart wall were used.

An ellipsoidal model of the left ventricle was also simulated.
Similar to the cylindrical model, the fiber orientation varied lin-
early from the epicardial to the endocardial wall. The angle of
the fiber direction with circumferential direction was60 for
the epicardial wall and 60for the endocardial wall. The direc-
tion of fibers was also perpendicular to the transmural direction
(Fig. 2). The model consisted of 2160 nodes and 1680 elements.
The initial (diastole) configuration is presented in Fig. 5(a).

The 128 128 128 pixel images of the ellipsoidal left ven-
tricle (LV) in systole and diastole configuration were generated
and smoothed with Gaussian kernels with a width at half of the
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Fig. 4. Cylindrical model of the left ventricle. Each row shows 3-D and
top views of the model. The images in each row were used to drive the
deformation of the diastole configuration (a) to the systole configuration (b)
and (c). Configuration (c) corresponds to a case of uneven thickening of the
myocardium.

maximum equal to 3 cm. The size of the pixel was 0.0625 cm.
The central long-axis views of these images are presented in
Fig. 5.

These images were used to drive the deformation using (7)
from the diastole configuration [Fig. 5(a)] to the target config-
uration [Fig. 5(b)].

IV. DISCUSSION

As shown in Fig. 3, the heart movement during contraction
is very complex. Most imaging techniques can only detect ra-
dial movement, when in fact, there is also substantial torsional
movement. It can be seen that torsion in the epicardial and endo-
cardial walls is different. During the contraction of our model,
the outer radius of the heart does not change as much as the
inner radius. Also, the length of the cylinder changes consider-
ably. This finding is consistent with results of other investigators
[9].

In the second example, an infarct was simulated where the
heart material in one of the angular segments was not able to
contract. It can be seen in Fig. 3 that the heart wall does not
thicken enough in that region, and that greatly affects the ejec-
tion fraction when compared to the normal configuration.

A similar torsional movement was visible in the simulation of
the heart deformation when the deformation was derived by the
imaging data. The imaging data were similar to data acquired
by gated SPECT or PET. So, with the help of the deformable

Fig. 5. Ellipsoidal model of the left ventricle (LV). The 3-D, top, and side
views for simulation at diastole (a) and systole (b). The images of central
long-axis views of the left ventricle, which were used to deform the model
from diastole configuration to systole configuration, are also shown.

model more features of the movement can be found from these
imaging modalities.

During all simulations, it was assumed that the fiber orien-
tations were known and that they were the same for all experi-
ments. In reality, the fiber orientation is not necessarily the same
for each heart. The very interesting problem of the impact of
fiber orientation distributions on heart movement can be inves-
tigated using the deformable model with fiber structure.

The validation of the model presented in this paper is very im-
portant. The value of the constantin (7) can slightly change
the final deformed configuration, so the most appropriatefor
human heart muscle has to be determined. We plan to use a
tagged MRI technique that can determine the whole deforma-
tion tensor of the heart movement to validate our model and to
determine parametersand that are best suited for the human
heart.

Ultimately, we plan to use this deformable model to simulate
LV or even the whole heart movement during the contractions.
The impact of infarcts on this movement, and on diagnos-
tically important LVEF or heart thickening can be studied
and parameterized. Also, using this model and imaging data
a priori, more precise LVEF and wall thickening can be found
than from nuclear medicine studies alone.
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